View Latest Blog Entries
Close
Categories
Testing & Assessment Certification Aging Wires & Systems Management Standard & Regulation Research Protection & Prevention Conference & Report Maintenance & Sustainment Arcing Miscellaneous
Popular Tags
Visual Inspection MIL-HDBK MIL-HDBK-525 FAR AS50881 FAR 25.1707 Electromagnetic Interference (EMI) Wire System High Voltage FAR 25.1709 Degradation Circuit Protection
All Tags in Alphabetical Order
25.1703 Accelerated Aging Aging Systems Aircraft Power System Aircraft Service Life Extension Program (SLEP) Arc Fault (AF) Arc Fault Circuit Breaker (AFCB) Arc Track Resistance Arcing Damage AS22759/87 AS4373 AS4373 Method 704 AS50881 AS5692 AS6019 AS85485 AS85485 Wire Standard ASTM F2799 Automated Wire Testing System (AWTS) Bent Pin Analysis Best of Lectromec Best Practice Cable cable testing Carbon Nanotube (CNT) Certification Chafing Chemical Testing Circuit Breaker Circuit Protection Coaxial cable comparative analysis Compliance Component Selection Conductor Connector connectors contacts Corona Corrosion Corrosion Preventing Compound (CPC) Cracking D-sub data analysis data cables degradat Degradation Delamination Derating Distributed Power System DO-160 Electrical Aircraft Electrical Component Electrical Testing Electromagnetic Interference (EMI) Electromagnetic Vulnerability (EMV) EMC EMF EN3197 EN3475 EN6059 End of Service Life Energy Storage Environmental Environmental Cycling ethernet EWIS Component EWIS Design EWIS Failure EWIS Thermal Management EZAP FAA AC 25.27 FAA AC 25.981-1C Failure Database Failure Modes and Effects Analysis (FMEA) FAR FAR 25.1703 FAR 25.1707 FAR 25.1709 fault tree Fixturing Flammability fleet reliability Flex Testing Forced Hydrolysis fuel system fuel tank ignition functional testing Fundamental Articles Future Tech Green Taxiing Grounding Harness Design Hazard Analysis health monitoring heat shrink tubing high speed data cable High Voltage Hot Stamping Humidity Variation Insulation insulation resistance IPC-D-620 ISO 17025 Certified Lab Laser Marking life limited parts life projection Maintenance Maintenance costs Mandrel Mechanical Testing MECSIP MIL-C-38999 MIL-C-85485 MIL-DTL-17 MIL-DTL-3885G MIL-DTL-38999 MIL-E-25499 MIL-HDBK MIL-HDBK-1646 MIL-HDBK-217 MIL-HDBK-454 MIL-HDBK-516 MIL-HDBK-522 MIL-HDBK-525 MIL-HDBK-683 MIL-STD-1560 MIL-STD-1798 MIL-STD-464 MIL-T-7928 MIL-W-22759/87 MIL-W-5088 Military 5088 modeling MS3320 NASA NEMA27500 No Fault Found off gassing Outgassing Overheating of Wire Harness Parallel Arcing part selection Performance Physical Testing Polyimide-PTFE Power over Ethernet Power systems predictive maintenance Probability of Failure Product Quality Radiation Red Plague Corrosion Reduction of Hazardous Substances (RoHS) relays Reliability Research Rewiring Project Risk Assessment SAE Secondary Harness Protection Separation Requirements Series Arcing Service Life Extension Severe Wind and Moisture-Prone (SWAMP) Severity of Failure Shield Shielding Solid State Circuit Breaker Space Certified Wires supportability Sustainment Temperature Rating Temperature Variation Test methods Test Pricing Testing Thermal Circuit Breaker Thermal Endurance Thermal Index Thermal Shock Thermal Testing Tin plated conductors Troubleshooting TWA800 UAVs verification Visual Inspection white paper whitelisting Wire Ampacity Wire Certification Wire Comparison Wire System wire testing Wire Verification

Consider a common aircraft wire: how many requirements and standards must be considered during its design and fabrication? A simple back-of-the-envelope calculation suggests at least 30 various requirements and standards. For an aircraft wire harness, that number can easily jump to 50. Without a doubt, between each of these standards and requirements, there can be confusion and misconceptions on the best ways to maintain certain parts of the wiring system.

Lectromec recently came across a set of guidance and recommendations that we feel need to be corrected. We do this because Lectromec’s mission is for safe reliable aircraft wiring systems. If misinformation and/or incorrect assumptions are applied, then there can be hazardous or catastrophic consequences.

In this article, we address these point by point and provide suggestions on best practices.

EWIS Inspection Timeline

Incorrect Assumption: The only chance to get to see some wire in aircraft is during upgrades.

Correction: As part of the Instructions for Continued Airworthiness for Part 25 aircraft, there must be an Enhanced Zonal Analysis Program (EZAP) in place for the scheduled inspection of all EWIS. https://www.lectromec.com/updating-periodic-maintenance-procedures/ These requirements have been in place for the last ten years and should not be news to maintainers. In short, there must be a plan in place to regularly inspect all elements of the aircraft wiring system. How often and what types of inspections are dependent upon the environment, the system, and proximity to critical systems.

Connectors
No, this is not a new and approved wire repair technique. EWIS is a high-complexity system and the design/maintenance choices should be based on vetted information.

Use of zip ties

Incorrect Assumption: The zip ties are fine in all applications.

Correction: The reason that many have frowned upon the use of zip ties is that:

  1. Zip ties are stiff and the edge can dig in and cut the insulation.
  2. Zip ties that are too tight can impact the performance of controlled impedance cables (e.g. Coax cables).

There are commercially available zip ties that have smoothed edges to reduce the level of damage. The ties are a great, easy to install wire harness management tool, but there must be some consideration as to their use, the environments in which they are installed, and the application.

Signs of Wiring Problems

Incorrect Assumption:: Signs of wiring problems include “insulation beginning to crack and peel.”

Correction: The cracking and peeling of insulation are most often associated with polyimide (Kapton®) or MIL-W-81381 style wires which are uncommon on aircraft these days. Further, the cracking and peeling of this wire (MIL-W-81381) are commonly seen on the topcoat which provides no indication of the wire insulation integrity (applied to provide a markable surface).  Lectromec has written about polyimide wire degradation as well as guidance on what to look for during EWIS inspections.

More information about connector aging is available here.

Use of CPCs

Incorrect Assumption: Use of CPCs in connectors is encouraged.

Correction: This practice of applying CPCs to connectors and on the wiring is now discouraged as it adds contaminates to the connector.  If not properly cleaned, these contaminates can build up and reduce the electrical performance.  Also, exposure of wiring to CPCs has shown to increases its flammability.

Neither one of these affects are beneficial to system performance.

The Best Way to Find wire Problems

Incorrect Assumption: Heating the wire with a heat gun and/or cooling it with freeze spray are good diagnostic tools.

Correction: The use of heat guns and cooling freeze sprays should be used with extreme caution. Freeze sprays can cool a wire to below -40oC.  Although many wires/cables are rated to operate below this temperature, their flexibility is significantly diminished and can generate insulation cracks if handled harshly.  When testing is performed to verify flexibility at low temperatures, it is done in a slow and controlled manner.

Conclusion

Wire systems care is not something that should be approached with any random idea. For those working around the wiring system, treat it as though it were the power/data cable for your new cell phone: Don’t step on it, don’t bend it too tight, and get help if you see damage. If you are looking for the best way to handle your wiring systems and/or looking to make sure your maintenance guidance is up to date, contact Lectromec. We have the team that can help you get the most from your aircraft’s EWIS.

Michael Traskos

Michael Traskos

President, Lectromec

Michael has been involved in wire degradation and failure assessments for more than a decade. He has worked on dozens of projects assessing the reliability and qualification of EWIS components. Michael is an FAA DER with a delegated authority covering EWIS certification and the chairman of the SAE AE-8A EWIS installation committee.