View Latest Blog Entries
Close
Categories
Testing & Assessment Certification Aging Wires & Systems Standard & Regulation Management Maintenance & Sustainment Conference & Report Protection & Prevention Research Arcing Miscellaneous
Popular Tags
Visual Inspection MIL-HDBK AS50881 MIL-HDBK-525 FAR High Voltage Electromagnetic Interference (EMI) FAR 25.1707 AS4373 Maintenance Wire System Arcing Damage
All Tags in Alphabetical Order
25.1701 25.1703 abrasion Accelerated Aging ADMT Aging Systems AIR6808 Aircraft Power System aircraft safety Aircraft Service Life Extension Program (SLEP) altitude arc damage Arc Fault (AF) Arc Fault Circuit Breaker (AFCB) Arc Track Resistance Arcing Arcing Damage AS22759 AS22759/87 AS4373 AS4373 Method 704 AS50881 AS5692 AS6019 AS83519 AS85049 AS85485 AS85485 Wire Standard ASTM D150 ASTM F2696 ASTM F2799 ASTM F3309 ATSRAC Attenuation Automated Wire Testing System (AWTS) Automotive backshell batteries Bent Pin Analysis Best of Lectromec Best Practice bonding Cable cable testing Carbon Nanotube (CNT) Certification Chafing Chemical Testing Circuit Breaker circuit design Circuit Protection Coaxial cable cold bend collision comparative analysis Compliance Component Selection Condition Based Maintenance Conductor conductors conduit Connector connector selection connectors contacts Corona Corrosion Corrosion Preventing Compound (CPC) Cracking D-sub data analysis data cables degradat Degradation Delamination Derating design safety diagnostic Dielectric breakdown dielectric constant disinfectant Distributed Power System DO-160 dynamic cut through E-CFR Electrical Aircraft Electrical Component Electrical Power Electrical Testing Electromagnetic Interference (EMI) Electromagnetic Vulnerability (EMV) EMC EMF EN2235 EN3197 EN3475 EN6059 End of Service Life End of Year Energy Storage engines Environmental Environmental Cycling environmental stress ethernet EWIS certification EWIS Component EWIS Design EWIS Failure EWIS sustainment EWIS Thermal Management EZAP FAA FAA AC 25.27 FAA AC 25.981-1C failure conditions Failure Database Failure Modes and Effects Analysis (FMEA) FAQs FAR FAR 25.1703 FAR 25.1707 FAR 25.1709 fault tree Fixturing Flammability fleet reliability Flex Testing fluid exposure Forced Hydrolysis fuel system fuel tank ignition functional testing Fundamental Articles Future Tech galvanic corrosion Gold Gold plating Green Taxiing Grounding hand sanitizer handbook Harness Design Hazard Analysis health monitoring heat shrink tubing high current high Frequency high speed data cable High Voltage History Hot Stamping Humidity Variation ICAs IEC60172 IEEE Inspection installation installation safety Instructions for Continued Airworthiness Insulation insulation breakdown insulation resistance insulation testing interchangeability IPC-D-620 ISO 17025 Certified Lab J1673 Kapton Laser Marking life limited parts Life prediction life projection Lightning maintainability Maintenance Maintenance costs Mandrel mean free path measurement mechanical stress Mechanical Testing MECSIP MIL-C-38999 MIL-C-85485 MIL-DTL-17 MIL-DTL-3885G MIL-DTL-38999 MIL-E-25499 MIL-HDBK MIL-HDBK-1646 MIL-HDBK-217 MIL-HDBK-454 MIL-HDBK-516 MIL-HDBK-522 MIL-HDBK-525 MIL-HDBK-683 MIL-STD-1353 MIL-STD-1560 MIL-STD-1798 MIL-STD-464 MIL-T-7928 MIL-T-81490 MIL-W-22759/87 MIL-W-5088 Military 5088 MIL–STD–5088 modeling MS3320 NASA NEMA27500 Nickel nickel plating No Fault Found off gassing Outgassing Overheating of Wire Harness Parallel Arcing part selection Partial Discharge partial discharge at altitude Performance physical hazard assessment Physical Testing polyimdie Polyimide-PTFE Power over Ethernet power system Power systems predictive maintenance Presentation Probability of Failure Product Quality pull through Radiation Red Plague Corrosion Reduction of Hazardous Substances (RoHS) regulations relays Reliability Research Resistance Revision C Rewiring Project Risk Assessment SAE Sanitizing Fluids Secondary Harness Protection Separation Requirements Series Arcing Service Life Extension Severe Wind and Moisture-Prone (SWAMP) Severity of Failure Shield Shielding signal cable silver plated wire skin depth skin effect Small aircraft smoke Solid State Circuit Breaker Space Certified Wires Splice standards stored energy supportability Sustainment Temperature Rating Temperature Variation Test methods Test Pricing Testing Thermal Circuit Breaker Thermal Endurance Thermal Index Thermal Shock Thermal Testing tin Tin plated conductors tin plating tin solder tin whiskering tin whiskers Troubleshooting TWA800 UAVs USAF verification Visual Inspection voltage voltage differential Voltage Tolerance white paper whitelisting Wire Ampacity Wire Certification Wire Comparison wire damage wire failure wire performance wire properties Wire System wire testing Wire Verification wiring components work unit code

Arcing

The Potential 270VDC EWIS Component Failure Impact

The More Electric Aircraft (MEA) design concept has placed, and will continue to place, a greater importance on aircraft electrical power and the supporting Electrical Wiring Interconnection System (EWIS) to accomplish flight critical tasks. To take the greatest advantage of weight savings from using electrically powered components, higher voltages have been brought into the aircraft power architecture.

The goal of Lectromec’s research was to generate data of the potential impact of EWIS component failure. Even with high voltage systems having been fielded for a couple decades, much of the published research provides information on the failure of 115VAC and 28VDC power systems. This research performed by Lectromec sought to fill in that gap.

Read more

High Voltage Impact the Aircraft Wiring System

For aerospace applications, high-voltage power is a rapidly growing interest and being addressed across several industry technical committees. The basic idea is that the power generation is increasing the supplied voltage and creating a need for the electrical wiring interconnects systems (EWIS) to have components designed to sustain these higher voltages for the entire length of the aircraft life. Just as it should not be expected for a connector to operate in a 300°C environment if it is only rated to 150°C, a connector should not be expected to perform perfectly with voltages exceeding its voltage rating. Read more