View Latest Blog Entries
Close
Categories
Testing & Assessment Certification Aging Wires & Systems Management Standard & Regulation Conference & Report Maintenance & Sustainment Research Protection & Prevention Arcing Miscellaneous
Popular Tags
Visual Inspection MIL-HDBK MIL-HDBK-525 FAR AS50881 FAR 25.1707 High Voltage Electromagnetic Interference (EMI) Wire System Maintenance Arcing Damage FAR 25.1709
All Tags in Alphabetical Order
25.1701 25.1703 Accelerated Aging ADMT Aging Systems Aircraft Power System Aircraft Service Life Extension Program (SLEP) arc damage Arc Fault (AF) Arc Fault Circuit Breaker (AFCB) Arc Track Resistance Arcing Arcing Damage AS22759 AS22759/87 AS4373 AS4373 Method 704 AS50881 AS5692 AS6019 AS85485 AS85485 Wire Standard ASTM F2799 ATSRAC Attenuation Automated Wire Testing System (AWTS) Bent Pin Analysis Best of Lectromec Best Practice Cable cable testing Carbon Nanotube (CNT) Certification Chafing Chemical Testing Circuit Breaker circuit design Circuit Protection Coaxial cable cold bend comparative analysis Compliance Component Selection Condition Based Maintenance Conductor conduit Connector connectors contacts Corona Corrosion Corrosion Preventing Compound (CPC) Cracking D-sub data analysis data cables degradat Degradation Delamination Derating diagnostic dielectric constant Distributed Power System DO-160 Electrical Aircraft Electrical Component Electrical Testing Electromagnetic Interference (EMI) Electromagnetic Vulnerability (EMV) EMC EMF EN3197 EN3475 EN6059 End of Service Life End of Year Energy Storage engines Environmental Environmental Cycling ethernet EWIS Component EWIS Design EWIS Failure EWIS Thermal Management EZAP FAA AC 25.27 FAA AC 25.981-1C Failure Database Failure Modes and Effects Analysis (FMEA) FAQs FAR FAR 25.1703 FAR 25.1707 FAR 25.1709 fault tree Fixturing Flammability fleet reliability Flex Testing fluid exposure Forced Hydrolysis fuel system fuel tank ignition functional testing Fundamental Articles Future Tech Green Taxiing Grounding Harness Design Hazard Analysis health monitoring heat shrink tubing high current high Frequency high speed data cable High Voltage History Hot Stamping Humidity Variation ICAs IEC60172 Instructions for Continued Airworthiness Insulation insulation resistance IPC-D-620 ISO 17025 Certified Lab Kapton Laser Marking life limited parts life projection Maintenance Maintenance costs Mandrel Mechanical Testing MECSIP MIL-C-38999 MIL-C-85485 MIL-DTL-17 MIL-DTL-3885G MIL-DTL-38999 MIL-E-25499 MIL-HDBK MIL-HDBK-1646 MIL-HDBK-217 MIL-HDBK-454 MIL-HDBK-516 MIL-HDBK-522 MIL-HDBK-525 MIL-HDBK-683 MIL-STD-1560 MIL-STD-1798 MIL-STD-464 MIL-T-7928 MIL-T-81490 MIL-W-22759/87 MIL-W-5088 Military 5088 modeling MS3320 NASA NEMA27500 No Fault Found off gassing Outgassing Overheating of Wire Harness Parallel Arcing part selection Performance physical hazard assessment Physical Testing polyimdie Polyimide-PTFE Power over Ethernet Power systems predictive maintenance Presentation Probability of Failure Product Quality Radiation Red Plague Corrosion Reduction of Hazardous Substances (RoHS) regulations relays Reliability Research Rewiring Project Risk Assessment SAE Secondary Harness Protection Separation Requirements Series Arcing Service Life Extension Severe Wind and Moisture-Prone (SWAMP) Severity of Failure Shield Shielding signal cable silver plated wire smoke Solid State Circuit Breaker Space Certified Wires stored energy supportability Sustainment Temperature Rating Temperature Variation Test methods Test Pricing Testing Thermal Circuit Breaker Thermal Endurance Thermal Index Thermal Shock Thermal Testing Tin plated conductors Troubleshooting TWA800 UAVs verification Visual Inspection voltage white paper whitelisting Wire Ampacity Wire Certification Wire Comparison wire damage wire failure wire properties Wire System wire testing Wire Verification work unit code

Maintenance

Wire Diagnostic Equipment

Finding wire faults/damage is not an easy task; now consider that problem across an entire aircraft. In-situ testing of wires/cables has always been viewed as something of a challenge to the industry. Given the branching that most harnesses undergo, the various wire lengths, splices, and numerous termination conditions, it can be difficult. Attempts to automate some of the testing has come to the development of Automatic Wire Test Sets (AWTS [pronounced “Eh-Wits”]).

Because there are so many ways to test a wire harness, the US military sought to create a performance standard to cover the general ideas and best practices of this equipment. Here, we review the standard and some of the performance features that can be expected when using equipment in compliance with the standard

Read more

Checking a Coaxial Cable for Damage with a Multimeter – Part II

In the last article, Lectromec introduced a damaged coaxial cable and tried three techniques to distinguish it from an undamaged cable. The standard multimeter tests (capacitance, inductance, and resistance measurements) found no appreciable difference.

The idea of this evaluation was to demonstrate that the classic multimeter, while a great tool, is not suitable for detecting damage to coaxial cables.

But we cannot run an article and leave it without a solution. In this article, we continue the testing of a damaged coax cable to see what technology, if any, can identify and perhaps locate the damaged section of cable.

Read more

Checking a Coaxial Cable for Damage with a Multimeter

The electronic multimeter is a great tool; invented in the 1920s, the multimeter has been used by millions of technicians and engineers seeking to measure circuits and troubleshoot electrical issues. So common are these tools now that it is almost impossible to consider a toolbox complete without one. 

While these are great tools and can be employed in a million situations, they are not the magic tool that can diagnose every circuit. If only one thing is remembered from this article: multimeters are not the tool to use for coaxial cables

Read more

New Guidance for Wiring System Inspection

Back in November 2018, the US Navy released the second revision to the military handbook on “Guidelines for inspection of aircraft electrical wiring interconnect systems” (MIL-HDBK-522). This handbook is a guide for the aircraft EWIS inspection and provides a lot of detailed examples of wiring evaluation from beginning to end of the EWIS. Read more

Impact of Wires Used as Ladders

Ideally, an aircraft’s EWIS aging is considered and monitored over time, but something as simple as gripping and pulling a wire or cable can change its electrical performance, specifically conductivity and resistance. Read more

Have we Reached the End of Aging Aircraft Wiring Systems? – Part II

At the start of the last article, the question was posed, “Is it possible that aircraft wiring reached a point where aging/degradation is a thing of the past?” In that article, four elements were identified that must be satisfied for wires/cables to be considered as age-free. The insulation and conductor aging factors were examined in the last article, and here we consider the remaining two: Design limits and random shocks. Read more

Aging Aircraft Wire

Aging aircraft wiring is a problem affecting the entire aviation industry. Lectromec’s evaluation of the 2016 service difficulty reports found that aircraft over 25 years old were more than two times likely to suffer problems with their wiring system. There are tools and analyses to get ahead of these issues. Read more

When to Pull the Component – End of EWIS Component Service Life

What is the end of life for a wire, cable, connector, or any Electrical Wiring Interconnect System (EWIS) component? This is a straightforward question that should have a straightforward answer, but often, this is an unanswered question. Regulatory guidance such as Fuel Tank Ignition Source Prevention Guidelines from the FAA think of wiring as something […] Read more

Correcting Bad Wire System Guidance

Consider a common aircraft wire: how many requirements and standards must be considered during its design and fabrication? A simple back-of-the-envelope calculation suggests at least 30 various requirements and standards. For an aircraft wire harness, that number can easily jump to 50. Without a doubt, between each of these standards and requirements, there can be […] Read more

Updating Periodic Maintenance Procedures

An area of aircraft maintenance and wire system sustainment which has been around for the last decade is the enhanced zonal analysis procedures, or EZAP for short. EZAP is a set of procedures developed by the FAA during the 2000s detailing a systematic process for handling of wiring system maintenance based on zones. Lectromec has […] Read more