View Latest Blog Entries
Close
Categories
Testing & Assessment Certification Aging Wires & Systems Standard & Regulation Maintenance & Sustainment Management Conference & Report Protection & Prevention Research Arcing Miscellaneous
Popular Tags
Visual Inspection AS50881 MIL-HDBK MIL-HDBK-525 High Voltage FAR Electromagnetic Interference (EMI) FAR 25.1707 AS4373 Maintenance Wire System Arcing Damage
All Tags in Alphabetical Order
2021 25.1701 25.1703 abrasion AC 33.4-3 Accelerated Aging ADMT Aging Systems AIR6808 AIR7502 Aircraft Power System aircraft safety Aircraft Service Life Extension Program (SLEP) altitude arc damage Arc Damage Modeling Tool Arc Fault (AF) Arc Fault Circuit Breaker (AFCB) Arc Track Resistance Arcing Arcing Damage AS22759 AS22759/87 AS23053 AS4373 AS4373 Method 704 AS50881 AS5692 AS6019 AS83519 AS85049 AS85485 AS85485 Wire Standard ASTM D150 ASTM F2696 ASTM F2799 ASTM F3230 ASTM F3309 ATSRAC Attenuation Automated Wire Testing System (AWTS) Automotive backshell batteries Bent Pin Analysis Best of Lectromec Best Practice bonding Cable Cable Bend cable testing Carbon Nanotube (CNT) Certification Chafing Chemical Testing Circuit Breaker circuit design Circuit Protection Coaxial cable cold bend collision comparative analysis Compliance Component Selection Condition Based Maintenance Conductor conductors conduit Connector connector selection connectors contacts Corona Corrosion Corrosion Preventing Compound (CPC) Cracking D-sub data analysis data cables degradat Degradation Delamination Derating design safety development diagnostic Dielectric breakdown dielectric constant Dimensional Life disinfectant Distributed Power System DO-160 dry arc dynamic cut through E-CFR Electrical Aircraft Electrical Component Electrical Power Electrical Testing Electromagnetic Interference (EMI) Electromagnetic Vulnerability (EMV) EMC EMF EN2235 EN3197 EN3475 EN6059 End of Service Life End of Year Energy Storage engines Environmental Environmental Cycling environmental stress ethernet eVTOL EWIS certification EWIS Component EWIS Design EWIS Failure EWIS sustainment EWIS Thermal Management EZAP FAA FAA AC 25.27 FAA AC 25.981-1C FAA Meeting failure conditions Failure Database Failure Modes and Effects Analysis (FMEA) FAQs FAR FAR 25.1703 FAR 25.1707 FAR 25.1709 fault tree Fixturing Flammability fleet reliability Flex Testing fluid exposure Forced Hydrolysis fuel system fuel tank ignition Functional Hazard Assessment functional testing Fundamental Articles Future Tech galvanic corrosion Gold Gold plating Green Taxiing Grounding hand sanitizer handbook Harness Design Hazard Analysis health monitoring heat shrink heat shrink tubing high current high Frequency high speed data cable High Voltage HIRF History Hot Stamping Humidity Variation HV system ICAs IEC60172 IEEE Inspection installation installation safety Instructions for Continued Airworthiness insulating material insulating tape Insulation insulation breakdown insulation resistance insulation testing interchangeability IPC-D-620 ISO 17025 Certified Lab ISO 9000 J1673 Kapton Laser Marking life limit life limited parts Life prediction life projection Lightning liquid nitrogen lunar maintainability Maintenance Maintenance costs Mandrel mean free path measurement mechanical stress Mechanical Testing MECSIP MIL-C-38999 MIL-C-85485 MIL-DTL-17 MIL-DTL-3885G MIL-DTL-38999 MIL-E-25499 MIL-HDBK MIL-HDBK-1646 MIL-HDBK-217 MIL-HDBK-454 MIL-HDBK-516 MIL-HDBK-522 MIL-HDBK-525 MIL-HDBK-683 MIL-STD-1353 MIL-STD-1560 MIL-STD-1798 MIL-STD-464 MIL-T-7928 MIL-T-81490 MIL-W-22759/87 MIL-W-5088 Military 5088 MIL–STD–5088 modeling moon MS3320 NASA NEMA27500 Nickel nickel plating No Fault Found OEM off gassing Outgassing Over current Overheating of Wire Harness Parallel Arcing part selection Partial Discharge partial discharge at altitude Performance physical hazard assessment Physical Testing polyimdie Polyimide-PTFE Power over Ethernet power system Power systems predictive maintenance Presentation Probability of Failure Product Quality pull through Radiation Red Plague Corrosion Reduction of Hazardous Substances (RoHS) regulations relays Reliability Research Resistance Revision C Rewiring Project Risk Assessment S&T Meeting SAE Sanitizing Fluids Secondary Harness Protection Separation Requirements Series Arcing Service Life Extension Severe Wind and Moisture-Prone (SWAMP) Severity of Failure shelf life Shield Shielding signal cable silver plated wire skin depth skin effect Small aircraft smoke Solid State Circuit Breaker Space Certified Wires Splice standards Storage stored energy supportability Sustainment System Voltage Temperature Rating Temperature Variation Test methods Test Pricing Testing Thermal Circuit Breaker Thermal Endurance Thermal Index Thermal Runaway Thermal Shock Thermal Testing tin Tin plated conductors tin plating tin solder tin whiskering tin whiskers top 5 Transient Troubleshooting TWA800 UAVs USAF validation verification video Visual Inspection voltage voltage differential Voltage Tolerance wet arc white paper whitelisting Wire Ampacity Wire Bend Wire Certification Wire Comparison wire damage wire failure wire performance wire properties Wire System wire testing Wire Verification wiring components work unit code

Testing & Assessment

High Voltage Arc Tracking Requirements (Part 2)

In part 2 of this article series, we continue to discuss how arc track resistance testing as we know it must be re-evaluated as more HV systems with unique testing requirements lead the aviation industry moving forward. Read more

High Voltage Arc Tracking Requirements (Part 1)

Arc track resistance testing has been a staple of the aerospace industry for nearly 40 years. This originated from the issues raised in the 1980s with polyimide insulated wire. Since that time, test methods have evolved to assess and quantify the susceptibility of wires to carbon arc tracking and the ability to withstand electrical arcing events. Read more

The Longevity of High Voltage Components

What does a wire need to do in the high voltage system, and how does it need to perform? This article reviews some of the fundamental concepts involved and what needs to be done to show a wire is compliant with the vehicle’s requirements. Read more

Low Temperature Bend Testing for Lunar Applications

NASA sought to evaluate wire and cable flexibility for lunar applications; specifically looking to evaluate the ease of reeling/unreeling wire and cable in lunar environments. Bend testing was performed on 35 different insulated wire and cable constructions at liquid nitrogen temperature to evaluate flexibility in extreme cold conditions. It was the intent of this effort that, “testing at the extreme cold temperature of liquid nitrogen will begin to build a database of what off-the-shelf types of wires and eventually cabling may be applicable to the lunar environment.” Read more

Pull Through Testing- An Addition to NEMA 27500

An area that has been poorly defined until recently has been the potential damage to wire/cable insulation due to wiring installation on aircraft. The latest revision of NEMA 27500 has looked to address this gap in cable assessments. In this article, we review the test requirement, expected performance, and what the results may mean to designers and installers.

Read more

New Means to Assess Corrosion Susceptibility

Low outgassing materials are critical for space applications. As one might imagine, a small, enclosed space with outgassing materials is not an ideal environment. To that end, space system developers have always sought insulation constructions with low outgassing properties. In past articles, Lectromec has covered the developments of the methods and materials used to reduce outgassing. Here, we examine the latest testing techniques for these materials. Read more

Conductor Resistance ASTM B193

The measurement of resistance seems to be a trivial task. Hook up a standard handheld multimeter with two probes and attach the probes to either side of the device or component that you want to measure. For the most part, this process works well. More correctly, for devices with resistances between 2 Ohms and 1M Ohm, this is a good technique, however, once the resistance values get really high or really low, the process becomes a little more complicated. While the basic physics remains the same (Voltage = Current * Resistance), getting the setup to correctly measure the component requires attention to detail. Read more

Solder Sleeves and Splicing in Shields

Shielded cables are necessary. They provide necessary EMI protection to ensure signal fidelity, and in some cables, such as coaxial cables, the shield is integral for signal transmission. Trying to use only non-shielded cables in any modern design would encounter such a significant impact on performance, it may not be possible except for a limited number of applications.

Because of this need for shielded cables, there is a wide range of components and supporting technologies to ensure proper use and reliable transmission of data. One of these technologies is a device to help with shield termination.

Read more

Dielectric Constant

There are some properties that are taken for granted with wires and cables until they are needed for precision applications. A conductor’s conductivity is assumed until the impact of a voltage drop or heating must be determined. In the same way, a cable’s dielectric constant is uninteresting until the integrity of high-frequency signals becomes critical.

This last property (dielectric constant), is important not only for cable insulations but also for a wide range of applications.

Read more

Light Weight and Normal Weight Wire Constructions

Saving weight is a large part of any aircraft design. Naturally, the electrical system is not exempt from the goal of shaving off a couple of pounds. This often comes in the form of looking for lighter connectors, lighter clamps, and also lighter wire constructions. Those that have done this have undoubtedly come across two classifications of wire construction: “Normal weight” and “light weight”. Of course, if the EWIS has to go on a diet, then the “light weight” construction looks like a good substitute for the “normal weight”… after all, why would the wire be called “light weight” if not for satisfying weight requirements. Read more