View Latest Blog Entries
Close
Categories
Testing & Assessment Certification Aging Wires & Systems Management Standard & Regulation Conference & Report Maintenance & Sustainment Research Protection & Prevention Arcing Miscellaneous
Popular Tags
Visual Inspection MIL-HDBK MIL-HDBK-525 FAR AS50881 FAR 25.1707 Electromagnetic Interference (EMI) Wire System High Voltage Arcing Damage FAR 25.1709 AS4373
All Tags in Alphabetical Order
25.1701 25.1703 Accelerated Aging ADMT Aging Systems Aircraft Power System Aircraft Service Life Extension Program (SLEP) arc damage Arc Fault (AF) Arc Fault Circuit Breaker (AFCB) Arc Track Resistance Arcing Arcing Damage AS22759/87 AS4373 AS4373 Method 704 AS50881 AS5692 AS6019 AS85485 AS85485 Wire Standard ASTM F2799 ATSRAC Attenuation Automated Wire Testing System (AWTS) Bent Pin Analysis Best of Lectromec Best Practice Cable cable testing Carbon Nanotube (CNT) Certification Chafing Chemical Testing Circuit Breaker Circuit Protection Coaxial cable cold bend comparative analysis Compliance Component Selection Condition Based Maintenance Conductor Connector connectors contacts Corona Corrosion Corrosion Preventing Compound (CPC) Cracking D-sub data analysis data cables degradat Degradation Delamination Derating dielectric constant Distributed Power System DO-160 Electrical Aircraft Electrical Component Electrical Testing Electromagnetic Interference (EMI) Electromagnetic Vulnerability (EMV) EMC EMF EN3197 EN3475 EN6059 End of Service Life End of Year Energy Storage engines Environmental Environmental Cycling ethernet EWIS Component EWIS Design EWIS Failure EWIS Thermal Management EZAP FAA AC 25.27 FAA AC 25.981-1C Failure Database Failure Modes and Effects Analysis (FMEA) FAQs FAR FAR 25.1703 FAR 25.1707 FAR 25.1709 fault tree Fixturing Flammability fleet reliability Flex Testing Forced Hydrolysis fuel system fuel tank ignition functional testing Fundamental Articles Future Tech Green Taxiing Grounding Harness Design Hazard Analysis health monitoring heat shrink tubing high current high Frequency high speed data cable High Voltage History Hot Stamping Humidity Variation ICAs IEC60172 Instructions for Continued Airworthiness Insulation insulation resistance IPC-D-620 ISO 17025 Certified Lab Laser Marking life limited parts life projection Maintenance Maintenance costs Mandrel Mechanical Testing MECSIP MIL-C-38999 MIL-C-85485 MIL-DTL-17 MIL-DTL-3885G MIL-DTL-38999 MIL-E-25499 MIL-HDBK MIL-HDBK-1646 MIL-HDBK-217 MIL-HDBK-454 MIL-HDBK-516 MIL-HDBK-522 MIL-HDBK-525 MIL-HDBK-683 MIL-STD-1560 MIL-STD-1798 MIL-STD-464 MIL-T-7928 MIL-T-81490 MIL-W-22759/87 MIL-W-5088 Military 5088 modeling MS3320 NASA NEMA27500 No Fault Found off gassing Outgassing Overheating of Wire Harness Parallel Arcing part selection Performance Physical Testing Polyimide-PTFE Power over Ethernet Power systems predictive maintenance Probability of Failure Product Quality Radiation Red Plague Corrosion Reduction of Hazardous Substances (RoHS) relays Reliability Research Rewiring Project Risk Assessment SAE Secondary Harness Protection Separation Requirements Series Arcing Service Life Extension Severe Wind and Moisture-Prone (SWAMP) Severity of Failure Shield Shielding signal cable silver plated wire smoke Solid State Circuit Breaker Space Certified Wires stored energy supportability Sustainment Temperature Rating Temperature Variation Test methods Test Pricing Testing Thermal Circuit Breaker Thermal Endurance Thermal Index Thermal Shock Thermal Testing Tin plated conductors Troubleshooting TWA800 UAVs verification Visual Inspection white paper whitelisting Wire Ampacity Wire Certification Wire Comparison wire failure wire properties Wire System wire testing Wire Verification work unit code

Blog

Thermal Life of Wires and Cables

While there is a wide range of products from which to choose, across many of these specifications there is a common element: maximum temperature rating. Here, we walk through a couple of the methods for assessing a wire/cable’s maximum temperature rating. At the end of this article, we delve into weaknesses of this assessment method and elements that should be considered when selecting a wire for your high temperature application. Read more

Where EWIS Stops

Having well-defined and recognized system boundaries is the best means to ensure an analysis of that system is robust and does not leave any analysis gaps. Without an established limit and assigned responsibilities, arguments will ensue as to who is the responsible party and time/effort will be wasted with duplicated analysis.

Because an aircraft’s wiring touches nearly all of the systems, it can be confusing to understand where the system starts and stops, and this has led to confusion as to the responsible party for the wiring system design and/or maintenance. Some organizations have seen the responsibility fall on the electrical power systems teams, others, avionics. Regardless of who takes up the responsibility, a clear definition of the wiring system’s physical and logical boundaries must be agreed upon. Thankfully, there are several industry documents that can be relied upon.

Read more

High Voltage Impact the Aircraft Wiring System

For aerospace applications, high-voltage power is a rapidly growing interest and being addressed across several industry technical committees. The basic idea is that the power generation is increasing the supplied voltage and creating a need for the electrical wiring interconnects systems (EWIS) to have components designed to sustain these higher voltages for the entire length of the aircraft life. Just as it should not be expected for a connector to operate in a 300°C environment if it is only rated to 150°C, a connector should not be expected to perform perfectly with voltages exceeding its voltage rating. Read more

How Much Does the Aircraft Environment Impact Wire Life?

When looking to select any aircraft component, typically the first means of down selecting from the wide variety of components that exists is based on the component’s performance characteristics i.e. can it perform the function to support the system. Next, the question then evolves to selecting those components that are best suited for the environmental conditions. This last part is more than just selecting the parts that are rated for the environmental conditions but also those that will have a long service life in those conditions. Ideally, the part will be reliable the entire service life of the aircraft and not require any replacement or additional maintenance; however, that usually is not the case (see Lectromec’s article on the immortal wire/cable). Read more

SwissAir 111 Incident

The year of 2018 was yet again another substantial year in commercial air travel. The first quarter of 2018 saw commercial flights carry over 202 million passengers in the US, approximately 8 million more than in the first quarter of 2017. Air travel remains increasingly popular, accessible to the public, and statistically the safest way to travel. This level of safety has been earned through decades of groundbreaking innovation, sometimes undeniably spurred by the desire to avoid repeating past tragedy.

An impactful and memorable incident that caused the industry to reevaluate its processes and procedures was the crash of Swissair Flight 111. Occurring almost two years after the Trans World Airlines Flight 800 (TWA800), the Swissair Flight 111 and TWA800 shared a common issue: wiring system failure.

Read more

Is my aircraft wiring serviceable?

A concept employed in the civil engineering field is that of serviceability. At its core, a structure should only remain in-service as long as it is serviceable. A serviceability limit should be based on measurable performance criterion that, if exceeded, remove it from service. In limit state design, the structure fails its serviceability if the criteria of the serviceability limit state are not met during the service life with the required reliability. Read more

International Test Standards for Aircraft Wire Tests

Frequently, Lectromec’s articles have focused on wire and cable testing from US-focused standards such as the SAE and US military (MIL) documents. While these are standards frequently cited, there are other standards organizations that support the aerospace wiring community. Thankfully, many of the standards share a common base and, as is the case with many of the SAE standards, these have been harmonized with European standards. In this article, we will review some of the European wire/cable test standards, variation from similar test methods, and their availability in Lectromec’s lab. Read more

Top 5 Articles from 2018

At the end of every year, Lectromec rummages through that year’s publications and articles to find the most popular ones. In 2018, this required going through 32 articles (7 were picked up by publications), revisiting two webinars, and 12 podcasts. Here are the top 5 Lectromec publications of 2018. Read more

Do I Need to Replace My 15/20/30/40 years Old Aircraft Wiring?

As aircraft age, it is natural to contemplate the aircraft condition as to how much longer the equipment can be maintained. Typically, after the engines, structures, environmental control system (ECS), navigation, landing gear, interiors, flight controls, and fuel system are considered, the question will ultimately appear, “do I need to replace my wires that are 15/20/25/30 years old?” While it would be nice if there were a simple answer, like all engineering, it comes down to the evaluation of the system. Here, we answer this question. Read more

Use of MIL-T-81490 cable in place of a MIL-DTL-17 cable

A common ‘go-to’ cable for RF applications is the MIL-DTL-17 cable. Many of the MIL-DTL-17 cables are rated to 1 GHz, some to 12.4 GHz (like M17/128), and only a couple at 20GHz (e.g. M17/130 and M17/133 – a word of caution with the /130 and /133 constructions: these are unjacketed cables with an exposed external conductor/shield). There is the M17/205 construction that is spec’d for up to 50GHz, but that comes with a caveat: attenuation. The accompanying figure shows the attenuation per 100ft of M17/205 cable; while the attenuation does rise quickly with higher frequencies, the specification does not provide any attenuation limits beyond 10 GHz. Read more