View Latest Blog Entries
Close
Categories
Testing & Assessment Certification Aging Wires & Systems Management Standard & Regulation Research Protection & Prevention Conference & Report Maintenance & Sustainment Arcing Miscellaneous
Popular Tags
Visual Inspection MIL-HDBK MIL-HDBK-525 FAR AS50881 FAR 25.1707 Electromagnetic Interference (EMI) Wire System High Voltage FAR 25.1709 Degradation Circuit Protection
All Tags in Alphabetical Order
25.1703 Accelerated Aging Aging Systems Aircraft Power System Aircraft Service Life Extension Program (SLEP) Arc Fault (AF) Arc Fault Circuit Breaker (AFCB) Arc Track Resistance Arcing Damage AS22759/87 AS4373 AS4373 Method 704 AS50881 AS5692 AS6019 AS85485 AS85485 Wire Standard ASTM F2799 Automated Wire Testing System (AWTS) Bent Pin Analysis Best of Lectromec Best Practice Cable cable testing Carbon Nanotube (CNT) Certification Chafing Chemical Testing Circuit Breaker Circuit Protection Coaxial cable comparative analysis Compliance Component Selection Conductor Connector connectors contacts Corona Corrosion Corrosion Preventing Compound (CPC) Cracking D-sub data analysis data cables degradat Degradation Delamination Derating Distributed Power System DO-160 Electrical Aircraft Electrical Component Electrical Testing Electromagnetic Interference (EMI) Electromagnetic Vulnerability (EMV) EMC EMF EN3197 EN3475 EN6059 End of Service Life Energy Storage Environmental Environmental Cycling ethernet EWIS Component EWIS Design EWIS Failure EWIS Thermal Management EZAP FAA AC 25.27 FAA AC 25.981-1C Failure Database Failure Modes and Effects Analysis (FMEA) FAQs FAR FAR 25.1703 FAR 25.1707 FAR 25.1709 fault tree Fixturing Flammability fleet reliability Flex Testing Forced Hydrolysis fuel system fuel tank ignition functional testing Fundamental Articles Future Tech Green Taxiing Grounding Harness Design Hazard Analysis health monitoring heat shrink tubing high speed data cable High Voltage Hot Stamping Humidity Variation Insulation insulation resistance IPC-D-620 ISO 17025 Certified Lab Laser Marking life limited parts life projection Maintenance Maintenance costs Mandrel Mechanical Testing MECSIP MIL-C-38999 MIL-C-85485 MIL-DTL-17 MIL-DTL-3885G MIL-DTL-38999 MIL-E-25499 MIL-HDBK MIL-HDBK-1646 MIL-HDBK-217 MIL-HDBK-454 MIL-HDBK-516 MIL-HDBK-522 MIL-HDBK-525 MIL-HDBK-683 MIL-STD-1560 MIL-STD-1798 MIL-STD-464 MIL-T-7928 MIL-W-22759/87 MIL-W-5088 Military 5088 modeling MS3320 NASA NEMA27500 No Fault Found off gassing Outgassing Overheating of Wire Harness Parallel Arcing part selection Performance Physical Testing Polyimide-PTFE Power over Ethernet Power systems predictive maintenance Probability of Failure Product Quality Radiation Red Plague Corrosion Reduction of Hazardous Substances (RoHS) relays Reliability Research Rewiring Project Risk Assessment SAE Secondary Harness Protection Separation Requirements Series Arcing Service Life Extension Severe Wind and Moisture-Prone (SWAMP) Severity of Failure Shield Shielding Solid State Circuit Breaker Space Certified Wires supportability Sustainment Temperature Rating Temperature Variation Test methods Test Pricing Testing Thermal Circuit Breaker Thermal Endurance Thermal Index Thermal Shock Thermal Testing Tin plated conductors Troubleshooting TWA800 UAVs verification Visual Inspection white paper whitelisting Wire Ampacity Wire Certification Wire Comparison Wire System wire testing Wire Verification

Certification

Maximum Harness Ampacity

The fundamental concept here is harness ampacity: the maximum amount of current transferred down a wire harness without exceeding the temperature rating for any component. Read more

Circuit Protection Selection Guidance

Circuit protection devices have existed since 1864; one would think that selection of circuit protection would be a straight forward task. However, it is not. NASA developed a seven-step process for circuit protection selection and both EN3179 and AS50881 provide some guidance. In a past article, Lectromec began to consider the differences between two major […] Read more

What is an EWIS Qualified Wire?

This is a question that Lectromec regularly receives. The reason for this question is that a parts-supplier or system-integrator is looking to find wires in compliance with EWIS requirements. Since there are so many ways to evaluate any component, the important question to consider is if a defined requirements list for aerospace wire exists? Here, […] Read more

Connector Failure Rates – Part #2

In Lectromec’s previous article, we introduced a basis for estimating connector failure rates. The framework utilized the failure information available from military handbook MIL-HDBK-217. In this article, we continue to review the parameters of the failure rate function and implications on how slight changes in the environment can have a dramatic impact on a connectors […] Read more

Connector Failure Rates – Part #1

Coming up with failure rates of electrical components is always a difficult task. Historically, when failure modes and effects analyses were created for aircraft systems, the level of detail of EWIS component failures were severely lacking. Some organizations would create a single failure number for an entire circuit, regardless of the wires or connections made […] Read more

Designing for Relays

Power transfer through aircraft or any electrical system requires components that have the capability to turn on and off. These switches, contactors, transistors, and electrical relays that route power through the aircraft are life limited parts. Whether from a design or sustainment view, understanding how these components degrade over time and what to look for […] Read more

Selecting the Right Wires and Cables

In reviewing Lectromec’s articles, one can find over 250 articles covering different segments of aerospace wiring systems and lifecycle. For some, this may be an overload of information. But, if these articles were consolidated to their fundamentals, one can conclude that by selecting the right parts, installing them the right way, and doing the right […] Read more

Does a Connector’s Plating Type Impact Performance?

Design and installation of an aircraft’s electrical system has been made significantly easier with the adoption of modular harness design. This design pattern allows for discrete wiring sections to be designed and fabricated; this is only possible with the reliable performance of connectors. The connector-ization of harnesses has led some OEMs to build platforms where […] Read more

Maximizing Electrical Component Performance

Most components for electrical systems will have an accompanying product specification or product information sheet. These information sheets contain a lot of information that include mechanical, thermal, and electrical performance and this information is regularly used by engineers to make technical decisions. This performance information is necessary to reduce engineering time and avoid the need […] Read more

Can the EWIS be Safe After a Modification?

The days of ‘fit and forget’ EWIS are at least a decade behind, the aircraft industry’s understanding of the implications of wiring as a system continues to evolve. New aircraft have gone through EWIS evaluations to ensure that the EWIS complies to regulations – not an easy task. Obviously, as the OEM design choices remain […] Read more