View Latest Blog Entries
Close
Categories
Testing & Assessment Certification Aging Wires & Systems Management Standard & Regulation Conference & Report Maintenance & Sustainment Protection & Prevention Research Arcing Miscellaneous
Popular Tags
Visual Inspection MIL-HDBK MIL-HDBK-525 AS50881 FAR High Voltage FAR 25.1707 Electromagnetic Interference (EMI) Maintenance Wire System Arcing Damage FAR 25.1709
All Tags in Alphabetical Order
25.1701 25.1703 Accelerated Aging ADMT Aging Systems Aircraft Power System Aircraft Service Life Extension Program (SLEP) arc damage Arc Fault (AF) Arc Fault Circuit Breaker (AFCB) Arc Track Resistance Arcing Arcing Damage AS22759 AS22759/87 AS4373 AS4373 Method 704 AS50881 AS5692 AS6019 AS83519 AS85485 AS85485 Wire Standard ASTM D150 ASTM F2799 ATSRAC Attenuation Automated Wire Testing System (AWTS) batteries Bent Pin Analysis Best of Lectromec Best Practice bonding Cable cable testing Carbon Nanotube (CNT) Certification Chafing Chemical Testing Circuit Breaker circuit design Circuit Protection Coaxial cable cold bend comparative analysis Compliance Component Selection Condition Based Maintenance Conductor conduit Connector connectors contacts Corona Corrosion Corrosion Preventing Compound (CPC) Cracking D-sub data analysis data cables degradat Degradation Delamination Derating diagnostic dielectric constant Distributed Power System DO-160 Electrical Aircraft Electrical Component Electrical Testing Electromagnetic Interference (EMI) Electromagnetic Vulnerability (EMV) EMC EMF EN3197 EN3475 EN6059 End of Service Life End of Year Energy Storage engines Environmental Environmental Cycling ethernet EWIS Component EWIS Design EWIS Failure EWIS Thermal Management EZAP FAA AC 25.27 FAA AC 25.981-1C Failure Database Failure Modes and Effects Analysis (FMEA) FAQs FAR FAR 25.1703 FAR 25.1707 FAR 25.1709 fault tree Fixturing Flammability fleet reliability Flex Testing fluid exposure Forced Hydrolysis fuel system fuel tank ignition functional testing Fundamental Articles Future Tech Green Taxiing Grounding Harness Design Hazard Analysis health monitoring heat shrink tubing high current high Frequency high speed data cable High Voltage History Hot Stamping Humidity Variation ICAs IEC60172 Instructions for Continued Airworthiness Insulation insulation resistance IPC-D-620 ISO 17025 Certified Lab Kapton Laser Marking life limited parts life projection Lightning Maintenance Maintenance costs Mandrel Mechanical Testing MECSIP MIL-C-38999 MIL-C-85485 MIL-DTL-17 MIL-DTL-3885G MIL-DTL-38999 MIL-E-25499 MIL-HDBK MIL-HDBK-1646 MIL-HDBK-217 MIL-HDBK-454 MIL-HDBK-516 MIL-HDBK-522 MIL-HDBK-525 MIL-HDBK-683 MIL-STD-1560 MIL-STD-1798 MIL-STD-464 MIL-T-7928 MIL-T-81490 MIL-W-22759/87 MIL-W-5088 Military 5088 modeling MS3320 NASA NEMA27500 No Fault Found off gassing Outgassing Overheating of Wire Harness Parallel Arcing part selection Performance physical hazard assessment Physical Testing polyimdie Polyimide-PTFE Power over Ethernet Power systems predictive maintenance Presentation Probability of Failure Product Quality Radiation Red Plague Corrosion Reduction of Hazardous Substances (RoHS) regulations relays Reliability Research Rewiring Project Risk Assessment SAE Secondary Harness Protection Separation Requirements Series Arcing Service Life Extension Severe Wind and Moisture-Prone (SWAMP) Severity of Failure Shield Shielding signal cable silver plated wire smoke Solid State Circuit Breaker Space Certified Wires Splice stored energy supportability Sustainment Temperature Rating Temperature Variation Test methods Test Pricing Testing Thermal Circuit Breaker Thermal Endurance Thermal Index Thermal Shock Thermal Testing Tin plated conductors Troubleshooting TWA800 UAVs verification Visual Inspection voltage white paper whitelisting Wire Ampacity Wire Certification Wire Comparison wire damage wire failure wire properties Wire System wire testing Wire Verification work unit code

Certification

Avoiding Fuel Tank Ignition

The number of aircraft accidents involving fuel tank ignition has thankfully been very low. However, the growing use of electrical power in aircraft has increased the number of wires and the likelihood of being routed near fuel system components. The increased electrical component density comes with a higher probability of a failure event occurring. In […] Read more

EWIS Design Changes – How to Achieve a Safe Separation Distance

Those familiar with aircraft wire system design know the limited available space in which wiring is usually routed. Often in tight quarters with other wire harnesses, redundant systems, and hydraulic lines, it can be very difficult and intimidating to identify safe separation distances in design and for retrofits. Adding to the complexity, a wire harness […] Read more

Meeting Requirements for EWIS Certification

There are more than 17 parts to the FAA’s Electrical Wiring Interconnection System (EWIS) regulations enumerated in the 25.1700 series. To show compliance with each of these regulations require a thorough subject area understanding. More so, as the EWIS evolves in design, it becomes clear that achieving EWIS certification requires a lot of data. If […] Read more

Electrical Fault and Fire Prevention and Protection

The prevention of electrical fires is a common goal for most aircraft systems. Advisory Circular (AC) 25-16, “Electrical fault and Fire Prevention and Protection”, released in 1991, can be considered one of the precursors to the Electrical Wiring Interconnection System (EWIS) regulations. Although the document is now 25 years old as of last month, AC 25-16 provides a wide variety of recommended practices that are commonplace in the EWIS design and installation. Here we review some of the key points addressed in AC 25-16 and considerations with modern EWIS design with respect to electrical fault and fire prevention and protection. Read more

High-speed footage of wire failure near fuel line

Introduction As with most fields, the more we learn about a particular topic, the better our understanding of its complexity and the finer details involved. One area Lectromec has done extensive research in is the potential impact of wire failure and electrical arcing (you can find several blog posts and white papers here). In this […] Read more

Why use an ISO 17025 certified lab for testing aircraft electrical systems?

Lectromec has an ISO 17025:2005 certified lab. What value does that bring to you? What impact will it have for testing aircraft electrical systems? This two minute video gives an answer: the ISO designation means Lectromec cares about quality. You can trust the results when you have your aircraft electrical system or component tested by […] Read more

An aircraft EWIS perspective with Petar Glamoclija

Today’s interview is with Petar Glamoclija, Senior Consultant at Mitsubishi Aircraft Corporation. Petar shares an aircraft EWIS perspective and his vast experience in aerospace wiring that includes Embraer, Bombardier, Boeing, and now Mitsubishi Aircraft Corporation. His current focus is on Electrical Wiring Interconnection Systems (EWIS) and Flammability. Petar was born in Belgrade, Serbia and has […] Read more

Dealing with EMI and EMV on radio frequency (RF) cables for aerospace applications

Because of this high level of compliance, the task group recommended that the UASs use the AS50881. For those looking to produce UASs, the current guidance outlined in AS50881 is the place to start when developing system design documents. The aerospace industry has been dealing with Electromagnetic Interference (EMI) and Electromagnetic Vulnerability (EMV) since the […] Read more

Aircraft EWIS regulations in China

There have been significant developments in the Chinese aerospace industry over the last couple of years. The largest of these developments is the design commencement of the Comac C919 narrow-body aircraft. It is a huge undertaking with the projected introduction into service in 2018. It has been necessary to standup an infrastructure capable to support […] Read more

Assessment of mechanical stress on aircraft wire insulation

Mechanical damage is one of the most common causes of aircraft wire insulation failure. This mechanical damage can come from a hundred different sources (maintenance actions, chaffing, pinching, etc.), but many put a similar basic stress on the wire. One area that must be considered from a wire selection and qualification perspective is pinching a […] Read more