View Latest Blog Entries
Close
Categories
Testing & Assessment Certification Standard & Regulation Aging Wires & Systems Maintenance & Sustainment Management Conference & Report Protection & Prevention Research Miscellaneous Arcing
Popular Tags
Visual Inspection High Voltage AS50881 MIL-HDBK MIL-HDBK-525 FAR AS4373 Electromagnetic Interference (EMI) Maintenance FAR 25.1707 Wire System Arcing Damage
All Tags in Alphabetical Order
2021 25.1701 25.1703 abrasion AC 33.4-3 AC 43 Accelerated Aging ADMT Aging Systems AIR6808 AIR7502 Aircraft Power System aircraft safety Aircraft Service Life Extension Program (SLEP) altitude arc damage Arc Damage Modeling Tool Arc Fault (AF) Arc Fault Circuit Breaker (AFCB) Arc Track Resistance Arcing Arcing Damage AS22759 AS22759/87 AS23053 AS29606 AS4373 AS4373 Method 704 AS50881 AS5692 AS6019 AS6324 AS81824 AS83519 AS85049 AS85485 AS85485 Wire Standard ASTM B355 ASTM B470 ASTM D150 ASTM D2671 ASTM D8355 ASTM D876 ASTM F2639 ASTM F2696 ASTM F2799 ASTM F3230 ASTM F3309 ATSRAC Attenuation Automated Wire Testing System (AWTS) Automotive Avionics backshell batteries bend radius Bent Pin Analysis Best of Lectromec Best Practice bonding Cable Cable Bend cable testing Carbon Nanotube (CNT) Certification cfr 25.1717 Chafing Chemical Testing Circuit Breaker circuit design Circuit Protection cleaning clearance Coaxial cable cold bend collision comparative analysis Compliance Component Selection Condition Based Maintenance Conductor Conductor Testing conductors conduit Connector Connector rating connector selection connector testing connectors contacts Corona Corrosion Corrosion Preventing Compound (CPC) corrosion prevention Cracking creepage D-sub data analysis data cables degradat Degradation Delamination Derating design safety development diagnostic Dielectric breakdown dielectric constant Dimensional Life disinfectant Distributed Power System DO-160 dry arc dynamic cut through E-CFR electric aircraft Electrical Aircraft Electrical Component Electrical Power Electrical Testing Electrified Vehicles Electromagnetic Interference (EMI) Electromagnetic Vulnerability (EMV) Electrostatic Discharge EMC EMF EN2235 EN3197 EN3475 EN6059 End of Service Life End of Year Energy Storage engines Environmental Environmental Cycling environmental stress ethernet eVTOL EWIS certification EWIS Component EWIS Design EWIS Failure EWIS sustainment EWIS Thermal Management EZAP FAA FAA AC 25.27 FAA AC 25.981-1C FAA Meeting failure conditions Failure Database Failure Modes and Effects Analysis (FMEA) FAQs FAR FAR 25.1703 FAR 25.1707 FAR 25.1709 Fault fault tree Fixturing Flammability fleet reliability Flex Testing fluid exposure Fluid Immersion Forced Hydrolysis fuel system fuel tank ignition Functional Hazard Assessment functional testing Fundamental Articles Fuse Future Tech galvanic corrosion Glycol Gold Gold plating Green Taxiing Grounding hand sanitizer handbook Harness Design harness protection hazard Hazard Analysis health monitoring heat shrink heat shrink tubing high current high Frequency high speed data cable High Voltage High Voltage Degradation HIRF History Hot Stamping Humidity Variation HV connector HV system ICAs IEC 60851 IEC60172 IEEE immersion insertion loss Inspection installation installation safety Instructions for Continued Airworthiness insulating material insulating tape Insulation insulation breakdown insulation resistance insulation testing interchangeability IPC-D-620 ISO 17025 Certified Lab ISO 9000 J1673 Kapton Laser Marking life limit life limited parts Life prediction life projection Lightning lightning protection liquid nitrogen lithium battery lunar Magnet wire maintainability Maintenance Maintenance costs Mandrel mean free path measurement mechanical stress Mechanical Testing MECSIP MIL-C-38999 MIL-C-85485 MIL-DTL-17 MIL-DTL-23053E MIL-DTL-3885G MIL-DTL-38999 MIL-E-25499 MIL-HDBK MIL-HDBK-1646 MIL-HDBK-217 MIL-HDBK-454 MIL-HDBK-516 MIL-HDBK-522 MIL-HDBK-525 MIL-HDBK-683 MIL-STD-1353 MIL-STD-1560 MIL-STD-1798 MIL-STD-464 MIL-T-7928 MIL-T-7928/5 MIL-T-81490 MIL-W-22759/87 MIL-W-5088 MIL–STD–5088 Military 5088 modeling moon MS3320 NASA NEMA27500 Nickel nickel plating No Fault Found OEM off gassing Outgassing Over current Overheating of Wire Harness Parallel Arcing part selection Partial Discharge partial discharge at altitude Performance physical hazard assessment Physical Testing polyamide polyimdie Polyimide-PTFE Power over Ethernet power system Power systems predictive maintenance Presentation Preventative Maintenance Program Probability of Failure Product Quality PTFE pull through Radiation Red Plague Corrosion Reduction of Hazardous Substances (RoHS) regulations relays Reliability Research Resistance Revision C Rewiring Project Risk Assessment S&T Meeting SAE SAE Committee Sanitizing Fluids Secondary Harness Protection separation Separation Requirements Series Arcing Service Life Extension Severe Wind and Moisture-Prone (SWAMP) Severity of Failure shelf life Shield Shielding Shrinkage signal signal cable Silver silver plated wire silver-plating skin depth skin effect Small aircraft smoke Solid State Circuit Breaker Space Certified Wires Splice standards Storage stored energy superconductor supportability Sustainment System Voltage Temperature Rating Temperature Variation Test methods Test Pricing Testing testing standard Thermal Circuit Breaker Thermal Endurance Thermal Index Thermal Runaway Thermal Shock Thermal Testing tin Tin plated conductors tin plating tin solder tin whiskering tin whiskers top 5 Transient Troubleshooting TWA800 UAVs UL94 USAF validation verification video Visual Inspection voltage voltage differential Voltage Tolerance volume resistivity vw-1 wet arc white paper whitelisting Winding wire Wire Ampacity Wire Bend Wire Certification Wire Comparison wire damage wire failure wire performance wire properties Wire System wire testing Wire Verification wiring components work unit code

What’s next for aircraft EWIS: Carbon nanotubes

Research

aircraft ewis
Carbon nanotubes may soon be ready for EWIS

Carbon nanotube (CNT) technology has been a big topic in many industries for more than a decade. Although it has been around for a while, the application has been hindered by the inability of the manufacturing process to create long, continuous CNTs. Recent developments have improved processes and are generating products that may soon be ready for application.

By weaving CNT fibers together, it is possible for the created thread to be used at the macroscopic engineering scale for applications such as wires and cables. These fibers have incredible properties that make them ideal for aerospace.

Aerospace Applications

Researchers at Rice University have found that, on a pound-per-pound basis, CNT-based fibers are much stronger and have a greater capacity for carrying current than copper cables of the same mass. According to the study, CNT fibers can carry up to four times as much current for the same weight. Given the current technology, the reduced weight comes with an increased cross section. This technology is another option for those designing aerospace Electrical Wire Interconnection Systems (EWIS) where weight is a significant factor.

The study also found that CNT fibers have the highest current carrying capacity (CCC) for any other carbon-based fibers and could more easily dispel heat through convection. The strength of the fibers was also observed by other researchers. They found that wires made from CNT could withstand more than 200,000 bending cycles without increasing resistivity to current (Note: the researchers were evaluating only a conductor and not an insulated wire). In addition, no increase in resistivity was observed when the wires were exposed to corrosive environments.

Many companies in the military and aerospace fields are funding research into new Electromagnetic Interference (EMI) shielding that can effectively protect sensitive electronic sensors and other equipment. EMI can interrupt an aircraft’s electronic equipment and telecommunications, lose data, and may even result in requiring the equipment to be replaced. The Rice University study has found that a more effective EMI shield can be created from a composite material infused with CNT fibers. Not only is this new material effective at resisting high frequency EMIs, but it is also lightweight (the shield weight of a coax cable with CNT shielding was found to be 96% lower compared to the shield weight of a typical copper conductor shielding). Currently researchers are testing how the material’s shielding properties can be strengthened by various factors such as the CNT fibers’ density and applied thickness.

Potential Replacement for Power Distribution Cables

Present-day power distribution cables are heavy large gauge wires with limited flexibility. Designers could remove these cables and replace them with either a lighter substitute (to achieve the same amount of current) or gain the ability to push more current through the system. The additional flexibility could also mean the cables could be routed in ways not possible with copper conductor wires.

Maintenance

Among the biggest struggles for aircraft maintainers is maintaining an airworthy EWIS. Without proper maintenance, essential EWIS components fail and may result in hazardous or catastrophic events. Because of this, it is necessary that any new material or technology is thoroughly examined before it is placed on any platform. The introduction of stronger, more flexible wires with high resistance to corrosion will likely reduce the likelihood of EWIS failure. When finally put into applications, the hopes that these new CNT wires will reduce maintenance costs will likely materialize.

Emma Schwoerer

Emma Schwoerer

Emma is a full time engineering student at The George Washington University. She works at Lectromec as a junior engineer on a variety of projects including wire testing, aged platform assessment, and arc damage modeling.