View Latest Blog Entries
Testing & Assessment Certification Aging Wires & Systems Standard & Regulation Management Conference & Report Maintenance & Sustainment Protection & Prevention Research Arcing Miscellaneous
Popular Tags
Visual Inspection MIL-HDBK MIL-HDBK-525 AS50881 FAR High Voltage FAR 25.1707 Electromagnetic Interference (EMI) Maintenance Wire System Arcing Damage AS4373
All Tags in Alphabetical Order
25.1701 25.1703 Accelerated Aging ADMT Aging Systems Aircraft Power System Aircraft Service Life Extension Program (SLEP) arc damage Arc Fault (AF) Arc Fault Circuit Breaker (AFCB) Arc Track Resistance Arcing Arcing Damage AS22759 AS22759/87 AS4373 AS4373 Method 704 AS50881 AS5692 AS6019 AS83519 AS85485 AS85485 Wire Standard ASTM D150 ASTM F2799 ATSRAC Attenuation Automated Wire Testing System (AWTS) batteries Bent Pin Analysis Best of Lectromec Best Practice bonding Cable cable testing Carbon Nanotube (CNT) Certification Chafing Chemical Testing Circuit Breaker circuit design Circuit Protection Coaxial cable cold bend comparative analysis Compliance Component Selection Condition Based Maintenance Conductor conductors conduit Connector connectors contacts Corona Corrosion Corrosion Preventing Compound (CPC) Cracking D-sub data analysis data cables degradat Degradation Delamination Derating diagnostic dielectric constant Distributed Power System DO-160 Electrical Aircraft Electrical Component Electrical Testing Electromagnetic Interference (EMI) Electromagnetic Vulnerability (EMV) EMC EMF EN3197 EN3475 EN6059 End of Service Life End of Year Energy Storage engines Environmental Environmental Cycling ethernet EWIS Component EWIS Design EWIS Failure EWIS Thermal Management EZAP FAA AC 25.27 FAA AC 25.981-1C Failure Database Failure Modes and Effects Analysis (FMEA) FAQs FAR FAR 25.1703 FAR 25.1707 FAR 25.1709 fault tree Fixturing Flammability fleet reliability Flex Testing fluid exposure Forced Hydrolysis fuel system fuel tank ignition functional testing Fundamental Articles Future Tech Green Taxiing Grounding Harness Design Hazard Analysis health monitoring heat shrink tubing high current high Frequency high speed data cable High Voltage History Hot Stamping Humidity Variation ICAs IEC60172 IEEE Instructions for Continued Airworthiness Insulation insulation resistance IPC-D-620 ISO 17025 Certified Lab Kapton Laser Marking life limited parts life projection Lightning Maintenance Maintenance costs Mandrel measurement Mechanical Testing MECSIP MIL-C-38999 MIL-C-85485 MIL-DTL-17 MIL-DTL-3885G MIL-DTL-38999 MIL-E-25499 MIL-HDBK MIL-HDBK-1646 MIL-HDBK-217 MIL-HDBK-454 MIL-HDBK-516 MIL-HDBK-522 MIL-HDBK-525 MIL-HDBK-683 MIL-STD-1560 MIL-STD-1798 MIL-STD-464 MIL-T-7928 MIL-T-81490 MIL-W-22759/87 MIL-W-5088 Military 5088 modeling MS3320 NASA NEMA27500 No Fault Found off gassing Outgassing Overheating of Wire Harness Parallel Arcing part selection Performance physical hazard assessment Physical Testing polyimdie Polyimide-PTFE Power over Ethernet Power systems predictive maintenance Presentation Probability of Failure Product Quality Radiation Red Plague Corrosion Reduction of Hazardous Substances (RoHS) regulations relays Reliability Research Resistance Rewiring Project Risk Assessment SAE Secondary Harness Protection Separation Requirements Series Arcing Service Life Extension Severe Wind and Moisture-Prone (SWAMP) Severity of Failure Shield Shielding signal cable silver plated wire smoke Solid State Circuit Breaker Space Certified Wires Splice standards stored energy supportability Sustainment Temperature Rating Temperature Variation Test methods Test Pricing Testing Thermal Circuit Breaker Thermal Endurance Thermal Index Thermal Shock Thermal Testing Tin plated conductors Troubleshooting TWA800 UAVs verification Visual Inspection voltage white paper whitelisting Wire Ampacity Wire Certification Wire Comparison wire damage wire failure wire properties Wire System wire testing Wire Verification work unit code

Solder Sleeves and Splicing in Shields

Testing & Assessment

Key Takeaways
  • To properly terminate shielded cables, the use of solder splices is sometimes needed.
  • There are a variety of solder splice options to address an application’s specific needs.
  • Solder splices go through a range of performance verification tests before qualification.

Shielded cables are necessary. They provide necessary EMI protection to ensure signal fidelity, and in some cables, such as coaxial cables, the shield is integral for signal transmission. Trying to use only non-shielded cables in any modern design would encounter such a significant impact on performance, it may not be possible except for a limited number of applications.

Because of this need for shielded cables, there is a wide range of components and supporting technologies to ensure proper use and reliable transmission of data. One of these technologies is a device to help with shield termination. Here, we review the need, use, and installation of solder sleeves.


If the cable’s shield were simply cut back and not terminated, this would leave a gap in the EMI protection creating an opportunity for electromagnetic noise to disrupt the signal integrity. Maintaining a continuous shield around the component conductors reduces the potential for EMI.

As a shielded cable arrive at connectors, if the connector is not designed for the termination of only that cable, it becomes vital for multiple cables to share the shielding to the connector shell. The shield termination at the connector becomes more complicated as the number of cables into a single connector increases (trying to properly terminate 10 shields at a single connector is not a trivial task). Solder sleeve products are designed to address the splicing and termination needs of shielded cables.


For installation, cable jacket is first stripped back to expose the shield. The length of this jacket removal is application dependent, but should be trimmed back enough that the shield and solder splice will not impact inserting component wires into the connector (this will likely be 1 – 5 inches depending on the number of wires into the connector and the connector size). The cable’s shield is then trimmed back away from the exposed cable end such that only a short segment of the shield remains exposed. The length of exposed shield will vary based on the cable size and solder sleeve combination and will range from 35 mils – 300 mils.

Using solder sleeves is a straight forward process that involves removing jacket, trimming back the shield, aligning the splice and applying heat.

The solder sleeve is then installed over the exposed jacket and shield. Here is where the magic of the solder sleeve comes in. The solder sleeve device itself is a heat-shrinkable thermoplastic sleeve that contains fluxed solder. When heated, the thermoplastic sealing ring at both ends of the splice contracts to provide an environmental seal. Furthermore, the thermoplastic sealing rings also act as strain relief on the solder sleeve – shield connection point by damping the impact of any cable flexing.

With further heating of the solder sleeve, the solder in the solder sleeve melts creating a bond with the cable shield. If the solder sleeve has a ground wire, the shield is now electrically bonded with the ground wire that can now be terminated to the connector backshell.


There are several types of splices that fall under the AS83519 standard for heat-shrinkable solder type shield terminations. These include:

  • /1 that are supplied without a ground lead. This is so a solder sleeve can then have a ground wire added during installation. This device is classified as environmentally resistant. These also have a thermal indicator for indicating if sufficient heat has been applied to the solder-sleeve for the solder to wet and hopefully make a good connection with the ground wire.
  • /2 These are similar to the /1 type but they are supplied with a ground lead.
  • /3 These solder sleeves are supplied with a ground lead that is a shield braid. The shield braid enables improved termination in shielded harness applications. Whereas the ground wire from the /2 construction could be terminated in a connector contact, the shield braid is not intended for termination in contacts.
  • /4 These solder sleeves are designed to terminate multiconductor cables. The solder sleeve has multiple holes, one for each of the cable’s component wires. A nice feature of these solder sleeves is that not every hole has to be filled; when heat is applied, the thermoplastic will seal any unused hole.
  • /5 These are like the /2 but are ROHS compliant.


There are several tests that are defined in the AS8319 standard and may be employed as part of the solder sleeve’s qualification and quality assurance. These include:

  • Recovery of the Thermoplastic – verify that thermoplastic property contacts with the application of heat.
  • Longitudinal Change – verify the solder sleeve length does not change after the application of heat.
  • Copper Mirror Corrosion- verify the solder sleeve does not cause corrosion.
  • Voltage Drop – verify the millivolt drop across the sample is low.
  • Insulation Resistance – verify the solder sleeve’s thermoplastic seal.
  • Dielectric Withstand Voltage – verify the solder sleeve’s thermoplastic seal.
  • Tensile Strength – verify the quality of the solder sleeve – shield connection.
  • Altitude Immersion – verify performance under vacuum conditions.
  • Temperature Cycling – verify performance under thermal cycling conditions.
  • Moisture Resistance – verify performance when exposed to humid conditions.
  • Fluid Immersion – verify performance after exposure to common aerospace fluids.
  • Heat Aging – verify performance after high temperature exposure.
  • Flammability – verify meets aerospace flammability requirements.
  • Vibration – verify solder sleeve – shield electrical integrity after exposure to a vibrational environment.

As with any EWIS product, the individual specification sheets should be reviewed to ensure it matches the application requirements.

Installation Reminders

While many of the EWIS wires and cables now are rated for operation in temperatures at or over 200C, just like much of the supporting equipment, AS83519 shield terminations are only rated up to 150C. This does limit their use at lower temperature parts of the aircraft.

When using these devices, just like with other splices, it is important they, as much as possible, are staggered. Failure to do so can have multiple negative impacts which include:

  • A much larger wire harness that creates additional stress on the wires
  • Because the wire harness has a larger circumference, the wires exiting the splice are likely to be at a tighter angle
  • May no longer fit into clamps and require a larger clamp to be installed

Splicing in a Conclusion

The use of shielded cables requires the use of additional components to ensure their reliable installation. In the cases where additional termination solutions are needed, the use of solder sleeves can be considered. The AS83519 (or military version M83519) solder splices may be used for this application.

To ensure that you are using quality products is not easy. Lectromec’s ISO 17025 accredited lab can help with part performance verification, testing, and analysis. Contact us to find out more.

Michael Traskos

Michael Traskos

President, Lectromec

Michael has been involved in wire degradation and failure assessments for more than a decade. He has worked on dozens of projects assessing the reliability and qualification of EWIS components. Michael is an FAA DER with a delegated authority covering EWIS certification and the chairman of the SAE AE-8A EWIS installation committee.